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Rotating fluids support waves. These inertial waves propagate obliquely through the
fluid, with an angle that is fixed with respect to the rotation axis. Upon reflection,
their wavelength is unchanged only when the wall obeys the local reflectional sym-
metry, that is, when it is either parallel or perpendicular to the rotation axis. For
internal gravity waves in a density-stratified fluid, sloping boundaries thus break the
symmetry of ray paths, in a two-dimensional container, predicting their focusing upon
attractors: particular paths onto which the wave rays, and hence the energy, converge,
and to which the wave energy returns after a small number of refections. Laboratory
observations, presented here, show that, despite the intrinsic three-dimensionality of
inertial waves, attractors still occur. The intensified wave energy on the attractor en-
courages centrifugal instabilities, leading to a mean flow. Evidence of this comes from
dye spreading, observed to develop most rapidly over the location where the attractor
reflects from the sloping wall, being the place where focusing and instabilities occur.
This mean flow, resulting from the mixing of angular momentum, accompanying
the intensification of the wave field at that location, has geophysical implications,
because the ocean, atmosphere and Earth’s liquid outer core can be regarded as
asymmetrically contained. The relevance of wave focusing in a rotating, spherical
shell, the modifications due to the addition of radial stratification, and its implica-
tions for observed equatorial current patterns and inertial oscillations are discussed.
The well-known universality of oceanic, gravito-inertial wave spectra might reflect
complementary, divergent (chaotic) wave-ray behaviour, which occurs in containers
obeying the reflectional symmetry, but in which symmetry is broken in the horizontal
plane. Periodic orbits still exist, but now repell.

1. Introduction
Like gravity in a density-stratified fluid, rotation provides ‘elasticity’ to a fluid

(Kelvin 1880; Bjerknes et al. 1933), and Coriolis forces are restoring as long as the
fluid’s angular momentum increases with increasing radius (Rayleigh 1916). Despite
the absence of density stratification, a homogeneous fluid can thus still be considered
stably stratified, but now in terms of angular momentum and in a radial direction
(Veronis 1970). While individually displaced particles move circularly in a plane
normal to the rotation axis, displacements of patches of fluid involve pressure forces
that drive motion in the axial direction too. With Ω denoting the angular frequency
of the rotating fluid, perturbations of frequency σ < 2Ω, known as (elastoid) inertial
waves (Bjerknes et al. 1933), will therefore propagate obliquely through the rotating
fluid (Görtler 1944), like internal gravity waves in density-stratified fluids (Görtler
1943). Their behaviour and fate is relevant to all rotating fluids occurring in nature
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or industry, particularly, as shown in the experiment here, when through mixing
they affect the wave’s medium. Examples include stars (Gough & McIntyre 1998),
planetary atmospheres (Bjerknes et al. 1933; Ushimara & Tanaka 1990), planetary
cores (Aldridge & Lumb 1987; Olson & Aurnou 1999), oceans and lakes (LeBlond
& Mysak 1978) and fluid-filled spinning spacecraft (Manasseh 1992).

The oblique propagation of inertial waves follows from the dispersion relation
that monochromatic perturbations have to satisfy: σ/2Ω = ± sin θ, which shows that
for fixed frequency, the direction in which energy propagates with respect to the
rotation axis θ is fixed. This dispersion relation determines that phase and energy
propagate in perpendicular directions, such that their horizontal components are in
opposition. Observations of inertial waves invariably show this oblique and transverse
propagation (Oser 1958; Fultz 1959) in closed cylindrical containers, often eventually
displaying the so-called ‘resonant collapse’ – a violent, global ‘breaking’ of the oblique
pattern of waves (McEwan 1970; Manasseh 1996).

The dispersion relation is obtained by substituting a plane wave ∝ exp[iK(x cos θ+
z sin θ)], of wavenumber magnitude K , in the hyperbolic equation, governing the
perturbation pressure p:

pxx + pyy − (4Ω2/σ2 − 1)pzz = 0, (1.1)

where subscripts denote partial derivatives, and x, y and z refer to Cartesian coor-
dinates, rotating around the vertical z. Poincaré (1885) derived (1.1) to describe the
(inviscid) internal oscillations of a homogeneous fluid in a rotating ellipsoid. This
equation needs to be solved subject to the requirement that the perpendicular velocity
component (related to pressure derivatives) vanishes at the boundary. For an incom-
ing plane wave of wavenumber ki, this requires the wavenumber kr of the reflected
wave to satisfy

n× kr = n× ki, (1.2)

with n denoting the boundary’s outward unit normal vector, making an angle α with
the horizontal (Phillips 1963). Since the absolute value of the wave direction θ is fixed
upon reflection, (1.2) can be rewritten as

Ki sin (α+ θ) = Kr sin (α− θ), (1.3)

which shows that, for arbitrary θ, the wave number magnitude is unchanged only
when α = 0, π/2 modπ; i.e. when the reflecting wall is perpendicular or parallel to the
rotation axis, like the walls of an axial cylinder having endwalls perpendicular to the
rotation axis. Such walls are thus said to possess a local reflectional symmetry. The full
sphere and ellipsoid are anomalous in the sense that, though not directly obeying this
reflectional symmetry, the focusing that occurs upon reflection is apparently exactly
balanced by defocusing. The same happens in the infinitely long cylinder, whose axis
is perpendicular to the rotation axis, which can be rigorously transformed to a channel
of rectangular cross-sectional shape, obeying the local reflectional symmetry (Barcillon
1968). However, besides the ellipsoid and (vertically or horizontally oriented) cylinder,
very few geometries exist for which closed-form, regular solutions of ‘Poincaré’s
problem’ are known (Greenspan 1968; Barcilon 1968). Its solution hinges on finding
a suitable coordinate system that allows separation of variables, which requires the
presence of some symmetry in the container shape. Even in a spherical shell, relevant
to geophysical studies, local reflectional symmetry is sufficiently broken to prohibit
closed-form solutions, and, consequently, leads to the development of singularities
(Bretherton 1964; Stewartson 1971; Rieutord, Georgeot & Valdettaro 2001), so-called
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wave attractors (Maas & Lam 1995). However, despite criticism (Bjerknes et al.
1933; Stewartson & Rickard 1969; Solberg 1936; Huthnance 1978; Hendershott
1981; Chapman 1982; Colin de Verdière & Schopp 1994), most commonly used
approximative descriptions of waves in (thin) rotating shells, such as the quasi-
geostrophic and Laplace tidal equations and their local approximations, the f- and
β-plane equations (Miles 1974; Gill 1982), eliminate the ability to develop singularities.
Here we present the results of a laboratory experiment in which the local reflectional
symmetry is broken by adopting a rectangular tank with one sloping sidewall. It shows
the physical relevance of inertial wave attractors and their geophysically important
mean field effects. Clearly, such a case with broken symmetry is much more common
than the delicate cases for which closed-form solutions can be found.

To appreciate what happens in a case with broken symmetry, consider an infinitely
long, rotating channel supplied with a rigid lid. Assuming the solution to be inde-
pendent of the along-channel coordinate, y say, equation (1.1) reduces to the wave
equation in terms of spatial coordinates,

pxx − (4Ω2/σ2 − 1)pzz = 0. (1.4)

This determines the pressure as the sum of two functions that are constant on the
mathematical characteristics, x ± z tan θ = constant (Maas et al. 1997). These lines
are identical to the ray paths, along which energy propagates. In channels whose
walls break the local reflectional symmetry there will be convergence of the rays
(Phillips 1963). Sloping sides therefore act as a lens, and focus two-dimensional
inertial waves upon an attractor, which is either a point (the apex) or a line (see
the example in Figure 1b), depending on whether the characteristic slope is larger
or smaller than that of the sloping wall. Focusing towards the apex was oberved
for inertial waves in a truncated cone by Beardsley (1970) and for internal gravity
waves in a wedge by Cacchione & Wunsch (1974). A line-shaped wave attractor
was first observed for internal gravity waves (Maas et al. 1997), in a tank of similar
cross-sectional shape to the one studied here. Only when some symmetry is present
in the container (and focusing is absent, or balanced by defocusing) may one find
regular eigenmodes. In terms of ray paths, such standing modes occur when each
ray is periodic (Maas & Lam 1995), allowing separation of variables. Feeding energy
into them will lead to secular growth and breaking (as Benielli & Sommeria (1996)
observed in the case of internal gravity waves), when and where angular momentum
decreases with increasing radius and centrifugal instability sets in (Rayleigh 1916). This
reveals the resonant collapse as resulting from the symmetry of the tank employed,
which should be absent in containers whose shape breaks the local reflectional
symmetry.

An explicit two-dimensional solution (Maas & Lam 1995) is useful for three-
dimensional containers of finite extent, when currents are parallel to the vertical
sidewalls, such as rectilinear, internal-wave currents (Maas et al. 1997). But two-
dimensional inertial waves have circular (anti-cyclonic) currents (Greenspan 1968),
which have a component perpendicular to the plane endwalls. This requires one
to address the much tougher, fully three-dimensional equation (1.1), and it is
not a priori clear whether focusing will still occur. The following experiment, in
a tank that is much longer in along-slope y- than cross-slope x-direction, how-
ever shows that, due to the presence of a sloping wall, inertial wave attractors
still exist. This choice of geometry produces weak y-variations, ∂y ≈ 0, appar-
ently rendering two-dimensional predictions in the (x, z)-plane, as in figure 1(b),
useful.
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2. Laboratory observation of inertial wave focusing
An experiment was carried out in the 13 m diameter, rotating platform in Coriolis-

lab, Grenoble. A tank of width, length and height 54×120×40 cm3 (in the x-, y- and
z-directions respectively), having a rigid lid and a sidewall sloping down to the middle,
was positioned eccentrically with its long side parallel to the rim of the platform
(centred 5.5 m from the axis, see figure 1a). The tank is filled with a well-mixed salt
solution, so as to obtain a homogeneous fluid whose density matches that of the
(spherical) polysterene particles, used for visualization purposes. The platform is first
put into steady rotation (angular frequency, Ω0 = 2π/T0, T0 = 46.17 s), to which the
fluid adjusts on a timescale TE ≈ 30 min, which provides a monotonically increasing,
radial (and, within the tank, nearly planar) angular momentum distribution. Here the
spin-up timescale TE = Ω−1

0 E1/2, where Ekman number E ≡ ν/2Ω0H
2 ≈ 2 × 10−5,

for kinematic viscosity ν = 10−6 m2 s−1 and depth H = 0.4 m (Greenspan & Howard
1963). Perturbations are introduced by weakly modulating the angular frequency,
Ω = Ω0(1 + ε sin σt), ε = 0.1, with a frequency σ = 2π/T1, T1 = 32.4 s. This choice
aims at establishing the (nearly) square-shaped attractor of figure 1(b), see Maas et al.
(1997). Particle image velocimetry (Fincham & Spedding 1997) is used to obtain top
(figure 2a) and plan (figure 2b) views of the velocity field on a 61× 45 grid. With this
method, motions are visualized by illuminating particles within a laser sheet, which are
followed by a digital video camera. The laser is intentionally kept out of focus (1 cm
‘sheet width’), enabling tracking of particles despite some cross-sheet displacement.
Velocity fields within the plane of the laser sheet are obtained by comparing patterns
in two subsequent images (taken 0.25 s apart). Additional information on the flow is
obtained by following the spreading of dye.

When the tank accelerates and decelerates, the Euler body force x×dΩ/dt produces
an alternating, vorticity-conserving, horizontal circulation cell (van Heijst, Maas &
Williams 1994). Figure 2(a) displays this flow in the right half of the tank. This
inviscid flow is subject to friction near the walls, where adjacent fluid quickly adjusts
to the velocity of the container. In a rotating fluid, such (Ekman) boundary layers
(Greenspan 1968) are of limited extent (δE = E1/2H = O(0.2) cm), and are therefore
badly resolved by measurements, but carry mass in the direction of the ambient,
radial pressure gradient. Convergence and subsequent divergence of these boundary
mass fluxes, together with the vertical flow directly induced by horizontal motion
perpendicular to the slope, finally leads to the forcing of the inertial waves via
periodic mass exchange with the (inviscid) interior. Surprisingly, even though the
exact spatial location where this happens is not precisely known, and is probably
spread out, the convergent nature of inertial wave characteristics predicts the fate
of the waves rather well. For, after a second adjustment period (of some 20 min), a
quasi-stationary pattern appears (figure 2b), which, in the in-plane component of the
kinetic energy, bears the nearly square-shaped feature of an inertial wave attractor
(figure 2c), predicted for this ratio of modulation and angular frequencies. Notice that
the in-plane component of kinetic energy is not by itself conserved. Hence, each of the
branches of the attractor vary in intensity over a cycle, but overall its square-shaped
pattern remains visible.

Vivid support for the existence of the inertial wave attractor comes from the
clockwise propagation of energy along the four sides of the attractor as inferred
from the phase propagation in figure 3 and consistent with the focusing direction
of characteristics (figure 1b). ‘Phase’ of the wave is identified with some observable,
periodically varying property of the motion, here taken as the angle of the velocity
vector with the horizontal, tan−1(w/u). Near the bottom (figure 3a), at z = 5 cm,
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Figure 1. (a) Sketch of the experimental configuration in which a rigid-lid tank with a sloping wall,
and filled with homogeneous water, is excentrically situated on a platform whose rotation speed Ω(t)
is weakly modulated sinusoidally, Ω(t) = Ω0(1 + ε sin σt), ε� 1. Distance of the central axis of the
tank to the platform’s rotation axis R equals 5.5 m. The local x, y, z coordinate frame of reference,
used further on, is indicated. (b) Sketch of vertical cross-section of container in (a). The tank is filled
with homogeneous fluid, that is ‘stratified’ in angular momentum (in this two-dimensional-plane,
increasing with increasing x). Some characteristics (lines along which energy propagates) of strictly
two-dimensional inertial waves are followed, to the right as solid lines (from X and Y ), showing
their convergence upon reflection from the slope, and to the left as dotted lines (from X). For
the particular ratio of perturbation and angular frequencies shown here, these characteristics all
converge on the square-shaped attractor KLMN (along which energy propagates in the clockwise
direction, denoted by the arrow). A second modulation frequency employed in the experiments and
referred to in the text, corresponds (nearly) to a degenerate line attractor, the dotted line PQ.

horizontal phase propagation (denoted by an arrow) is towards the sloping wall
(coloured green), while near the top (figure 3b), at z = 35 cm, it propagates away
from the sloping wall. As horizontal components of energy and phase propagate in
opposite directions, this implies that near the bottom energy propagates away from,
and near the top towards, the sloping wall. Vertical phase and energy propagation
are aligned and upward next to the vertical sidewall (figure 3c), and downward
over the sloping region (figure 3d) (apart from some unexplained upward motion in
the higher regions). The resulting clockwise energy propagation in the (x, z)-plane is
consistent with that predicted by the converging characteristics (figure 1b). A movie of
contour plots of the phase clearly reveals a phase pattern with a saddle in the centre
of the square-shaped attractor, and with phase flow towards the sloping wall (and
opposite corner). These results suggest that a classical experiment in a concentric,
truncated cone (Beardsley 1970; Henderson & Aldridge 1992) should be reinterpreted
as showing wave attractors, rather than eigenmodes (Maas et al. 1997).

2.1. Generation of mean flow

Indirect evidence for the existence of an inertial wave attractor comes from considering
the consequences of the intensification of inertial wave energy. Ensuing centrifugal
instabilities will mix angular momentum, particularly at the radius where the attractor
reflects from the slope, where the focusing takes place (at position L in figure 1b).
To appreciate what this mixing implies, consider the angular momentum rv of a
mixture of two equal quantities of solidly rotating fluid (azimuthal velocity v = rΩ),
coming from radii r1 and r2 > r1, found at r̄ = (r1 + r2)/2: r̄v̄ ≡ (r1v1 + r2v2)/2.
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Figure 2. (a) Velocity observations (u, v) in a horizontal x, y-section of the right half of the tank,
at z = 30 cm above the bottom. The sloping wall is in the upper half of this figure, above the
dashed line (x > 27 cm). Vertical, solid walls are at x, y = 0. The maximum velocity in this figure
is 0.48 cm s−1. (b) Velocity observations (u, w) in a vertical x, z-section, at y = 25 cm from the front
wall, at a particular instant of the quasi-periodic state, showing focused inertial waves of modulation
period. The maximum velocity in this plane is 0.32 cm s−1. Notice that the bottom 3 cm and upper
right hand corner contain no observations. (c) False-colour (and smoothed) pattern of in-plane
component of kinetic energy, u2 + w2, corresponding to (b).
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Figure 3. Phase, tan−1(w/u), of the (u, w) velocity vector in the vertical plane at y = 25 cm, shown,
along the ordinate, as a function of time and, along the abscissa, as a function of horizontal distance
at fixed height, (a) z = 5 cm, and (b) z = 35 cm, or as a function of height at fixed distance from
the vertical wall, (c) x = 4.6 cm and (d) x = 27.6 cm. Arrows indicate phase progression.
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The ratio of this quantity to the amount present at that location before mixing is
A = r̄v̄/(r̄2Ω) = 2(r2

1 +r2
2)/(r1 +r2)

2, thus giving the local velocity, after mixing, relative
to that of a solid body, as A = v̄/(r̄Ω) = 2/[1 + 2/(r1/r2 + r2/r1)]. As 1 < A < 2,
mixing of angular momentum thus means the generation of a cyclonic mean flow
(Thompson 1979). Notice that in this example mixing is presented as a single event. In
reality, this is a continuous process, leading to acceleration of a mean flow (Thompson
1970), whose final, observable magnitude is determined by (here unresolved) damping
mechanisms. In analogy to the horizontal spreading of a mixture of density-stratified
fluid along a gravity-potential surface, this accelerated water will now spread out
axially, along a surface of the centrifugal potential (Thompson 1979). Therefore, we
expect the mean flow generated at L to be present over the whole depth (along line
LS in figure 1b). (This might also have caused the observed mean flow in a similar
experiment in a paraboloid (Bretherton, Carrier & Longuet-Higgins 1969).)

To verify this, dye was injected at the quasi-steady state, through holes in the upper
glass surface, and its evolution was followed by camera from above (see the two
pictures, taken 6 modulation periods apart, in figure 4a, b). Apart from a horizontal
oscillation of the dye, following the inviscid response of the fluid (see figure 2a),
a remarkable net cyclonic, horizontal drift is observed over the central part of the
sloping wall (upper half of figure 4a, b, at x ≈ 40 cm), which is confirmed by direct
observation of the time-averaged velocity (figure 4e), and which is clearly detached
from the intersection of this plane with the slope (at x = 46 cm). A return flow due
to continuity (at x ≈ 2 cm), visible at the bottom of this picture, does stick to the
(vertical) wall. The maximum velocity in this plane is 0.13 cm s−1, which agrees well
with the 26 cm displacement of the dye tip, occurring at the mid-slope position over
194.4 s period, inferred from combining panels (a) and (b).

In contrast, such a drift is absent when the modulation period is changed to
T1 = 37.7 s, when the attractor nearly degenerates into line PQ of figure 1(b). Ray
tracing (not shown) reveals that the line is still attracting, but viscous damping in
the interior of the fluid apparently inhibits the concentration of energy upon the
attractor (and subsequent mixing and mean-flow generation), and dye simply spreads
diffusively (figure 4c, d). This can be understood since the fluid motion along two
opposite sides of a rectangular-shaped attractor (such as KL and MN in figure 1(b)
for a square-shaped attractor) may be parallel to these sides, but is out of phase,
leading to strong shearing when these sides approach one another (upon change of
the frequency of the wave, such that its attractor deforms into a line). For this case
no particle image velocimetry is available.

3. Geophysical implications
3.1. Forcing of equatorial currents

The relevance of inertial wave attractors and their attendant mean flows for ‘geophys-
ical containers’, such as oceans and lakes, which are not only clearly asymmetrically
located with respect to the rotation axis, but also have sloping boundaries, is obvious.
Even geometries which at first sight seem symmetric, such as the rotating spherical
shell, relevant as descriptions of planetary atmospheres and cores, reveal, at a second
glance, that they break the local reflectional symmetry of the centrifugal potential.
However, a discussion of inertial waves proper (let alone their focusing) is rare. This
is because in the ‘traditional approximation’ (Eckart 1960; Phillips 1966, the angular
velocity component that is tangent to the Earth is neglected, while the hydrostatic
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Figure 4. (a) Top view of the right half of the container, with the sloping wall visible in the upper
half of the figure. The bottom and sloping wall have been supplemented with a 2 cm grid (distorted
along the slope). Dye has been injected through a number of holes (of diameter ≈ 1 mm) in the
glass top lid, at 14 cm from the vertical glass wall, at the right (y = 0). Modulation period is 32.4 s.
Dye pictures, shown here, are taken at the moment that the dye reaches its most rightward position
over the slope. (b) Picture taken 6 modulation periods after that in (a), showing the clear leftward
spreading of dye over the central part of the slope in the upper half of the figure (revealing a
cyclonic mean flow, i.e. in the same direction as the anti-clockwise background rotation). (c) As in
(a), but with modulation period 37.7 s. Dye injections have additionally been made at some holes in
the centre, and on the lower left of this figure. (d) As in (c), but taken 5 periods later. Dye seems to
have spread diffusively. No signs of significant mean flow were observed in this case. (e) Top view
of observed (time-averaged) mean flow at height z = 30 cm, when modulation period is as in (a)
and (b). The foot of the slope (at x = 27 cm) is denoted by a dashed line.
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approximation is also generally made. These approximations, on the f-plane reducing
inertial waves to non-propagating oscillations, are formally justified (in off-equatorial
regions) because of the presence of density stratification (Hylleraas 1939; Miles 1974),
but must ultimately be motivated by the observed omni-presence of strong local
inertial oscillations (of frequency 2Ω sinφ, at latitude φ), that seem to favour the
perpendicular component of the angular velocity. The traditional approximation,
however, fails in the equatorial zone, where gravity and centrifugal potential surfaces
are parallel. The existence of approximate, trapped wave solutions of a rotating,
homogeneous fluid in the equatorial zone (Stern 1963), described essentially by (1.4),
led to the discovery that such a shell indeed carries periodic characteristic patterns
(Bretherton 1964), which are attracting (Stewartson 1971; Hendershott 1981; Rieutord
et al. 2001) and exist over continuous frequency bands (Israeli 1972). This suggests
that inertial waves, generated around the equator by broad-band forcing, approach
attractors, leading to centrifugal instabilities and, hence, mix angular momentum at
their reflections from the ocean surface (where they get focused) and thus generate
an eastward (cyclonic) zonal mean flow, which spreads out axially, along its potential
surface. Conceptually, this can clearly contribute to observed equatorial countercur-
rents, as well as undercurrents (interpreted as belonging to the same axial surface, see
Figure 5a). As fluid in a spherical shell in solid body rotation has the highest possible
angular momentum at the surface of the equator, mixing can only reduce angular
momentum there, necessarily leading to westward surface flow. This mixing mech-
anism might thus contribute to the observed equatorial current pattern, paralleling
that produced by the wind (Gill 1982) and might be relevant to the enigmatic and
persistent deep zonal current patterns, observed in the near-equatorial regions (Talley
& Johnson 1994; Firing, Wijffels & Hacker 1998; Richardson & Fratantoni 1999;
Muench & Kunze 1999). It may also be relevant for the quasi-biennial oscillation of
the equatorial, lower stratosphere that, according to Sato & Dunkerton (1997), might
be driven by gravito-inertial waves (rather than Kelvin and mixed Rossby–gravity
waves). Thus, if geometric focusing of inertial waves and subsequent mixing is of
relevance to zonal current patterns as observed in the ocean, stratosphere and plan-
etary atmospheres, all that is perhaps needed to produce them is a liquid, rotating,
spherical shell, supplemented with low-frequency (σ < 2Ω) noise.

In Poincaré’s non-stratified model, gravity dominates centrifugal effects in deter-
mining the oblate (disk-like) spheroidal shape of the inner and outer boundaries of the
‘fluid container’ (here approximated by spheres). But, perturbations of this contained,
homogeneous fluid no longer ‘feel’ gravity, and are exclusively restored by centrifugal
(Coriolis) forces, so that rays are straight lines, as in figure 5(a). Correspondence with
reality may be claimed in the near-equatorial zone of the ocean only (when applied to
the gravito-inertial frequency band), where centrifugal and buoyancy forces co-align.
The real ocean, however, is also stratified (radially, in a first approximation), and
buoyancy (gravity) forces again dominate. Investigations of such a rotating, radially
stratified liquid shell show that a hyperbolic, gravito-inertial wave regime, and there-
fore also wave attractors, continue to exist, but with characteristics that get bent, and
that reflect from a turning surface that borders the spatial domain over which (1.1)
applies (Friedlander & Siegmann 1982; Dintrans, Rieutord & Valdettaro 1999). In a
non-rotating, stratified spherical shell, any mixture would spread tangentially, along
a spherical potential surface. The previously noted axial spreading of water whose
angular momentum was mixed in the homogeneous, rotating case, however, makes it
clear that in the combined case of a rotating, radially stratified liquid shell, even when
buoyancy forces dominate over Coriolis forces, spreading of a mixture will no longer
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Figure 5. Sketch of characteristics (solid lines) in a vertical cross-section of a rotating spherical
shell filled with (a) homogeneous fluid, and (b) fluid that is density-stratified radially. Rotation
axis z is along the ordinate; cylindrical distance r along the abscissa. (a) Demonstrates equatorial
trapping (Bretherton 1964) and focusing of characteristics (and waves), leading to mixing of angular
momentum. This accelerated water will subsequently spread axially (dashed line) from focusing
locations F , leading to a band of eastward (cyclonic) flow,

⊗
, like the oceanic, near-surface north

and south equatorial countercurrents, and like the subsurface equatorial undercurrent. At the surface
of the equatorial plane, angular momentum mixing decelerates fluid, predicting an (anti-cyclonic)
westward flow,

⊙
, like the oceanic surface equatorial current. Notice that for visual clarity this

figure has been compressed in the axial direction by a factor 4. (b) Demonstrates trapping (energy
following the arrow) of (bent) characteristics (and waves) in the wedge formed by hyperbolic turning
surface H and inner sphere I (in the ocean, extending a few tens of kilometres north of the inertial
latitude φ, which is line L to which H tends asymptotically), see Dintrans et al. (1999).

be strictly along spherical potential surfaces, but diapyncal, along prolate (rugby-ball
shaped) spheroids. In the cross-sectional plane, shown in figure 5(a), this will be
along ellipses, elongated in the axial z-direction, intersecting the outer spherical shell,
thus retaining the same topological features: westward flow at the surface on the
equator, and eastward flow of mixed (zonally accelerated) water in the north and
south equatorial regions, which may again spread from the surface downwards and
equatorwards, albeit much less deep than in a homogeneous case, in line with the
observed depth of the equatorial undercurrent being much less than predicted for
the homogeneous case. Given the smallness of the frequency windows over which
(physically realizable) large-scale attractors appear (Stewartson 1971; Tilgner 1999;
Rieutord et al. 2001), and considering the general sensitiveness of the shape of the
attractor to the details of the description of the medium (geometry, stratification
and current shear, see Maas & Lam 1995), a fair quantitative comparison deserves
these factors to be incorporated more carefully than can be done here. Suffice it to
state that very strong mixing close to the surface has indeed been observed in the
north equatorial countercurrent (Perkins & Van Leer 1977), in line with the above
expectation. Further work is needed to find out which frequency window might be
responsible for the large-scale attractors, and to see if there is any evidence for spatial
enhancement of that particular frequency band within the equatorial countercurrent
regions. The most fascinating question will be to see whether the tidal frequencies
may actually be situated in one of these ‘attracting windows’, which might boost their
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importance, in a similar way to that recently proposed with respect to the general
ocean circulation (Munk & Wunsch 1998).

3.2. Inertial oscillations

The remarkable fact that basic properties like stable stratification, rotation, and
irregular shape, of some ‘fluid envelopes’, like the ocean, lead to the prevalence of
wave attractors in a hyperbolic wave regime with its ensuing mixing, and mean flow
generation, not only urges a search for oceanic wave attractors, but also forces us to
recognize the limitations of many present-day, large-scale ocean models, that simply
do not allow for wave attractors.

A case in point is inertial oscillations, which are commonly observed in the ocean
(Webster 1968; Fu 1981), being a spectral peak of velocity records at or slightly
above frequency σ = 2Ω sinφ, where φ is the latitude where the measurements are
taken. Significantly, these oscillations show a higher coherence between horizon-
tal or diagonally separated current meters, than between vertically separated ones
(Anderson, Huyer & Smith 1983), have a relatively small horizontal lengthscale
(< 10 km) (Kunze & Sanford 1984; d’Asaro 1984), and often occur at great depths
(> 300 m), as for instance, in the tideless Black Sea (Golubev 1995), raising the need
for an amplification mechanism of observed, large, persistent deep inertial waves
(Kundu 1993).

Previous theories have either interpreted inertial oscillations as being locally excited
at the surface at latitude φ, say, which then act as a source region, from which waves of
that frequency σ can propagate equatorwards (for which the local inertial frequency
is less), as gravito-inertial waves (Garrett 1999), or as turning point enhancement
of poleward propagating and subsequently reflecting gravito-inertial waves of given
frequency σ, arising from the equatorial belt between latitudes ±φ = ± sin−1 σ/2Ω
(Munk & Phillips 1968; Stewartson & Walton 1976; Fu 1981). The present model,
recognizing the curvature in the turning surface, suggests that these poleward gravito-
inertial waves may actually be trapped in the wedge formed by the turning surface
(very close to the inertial latitude (Friedlander & Siegmann 1982)) and bottom
(Dintrans et al. 1999), see figure 5(b), thus explaining the ubiquitous build-up of
energy at, what is reversely called, the inertial frequency, f = 2Ω sinφ, which then
acts as a sink (point attractor). The final approach to the bottom agrees with
observed, predominantly downward inertial wave energy propagation, close to the
inertial latitude (Leaman & Sanford 1975; d’Asaro & Perkins 1984). Significantly,
inertial oscillations have been observed in the stably stratified, lower stratosphere
(Thompson 1978; Ushimara & Tanaka 1990; Hu & Holzworth 1997), while they are
inconspicuous in the much weaker stratified troposphere (Holton 1979), in agreement
with the fact that the homogeneous spherical shell lacks such a trap.

3.3. Universality of gravito-inertial wave spectra

Breaking the local reflectional symmetry of characteristics in the axial plane leads
to wave attractors, as shown rigorously in a two-dimensional setting, and as made
plausible by the above experiment in a three-dimensional container. Interestingly, the
Poincaré problem (1.1) includes a complementary behaviour, with divergent (chaotic)
ray paths, when the symmetry of the problem is broken in the horizontal plane. This is
possibly of relevance in understanding the canonical nature of oceanic, gravito-inertial
wave spectra (Garrett & Munk 1975; Munk 1980).

This behaviour is obtained when the container surfaces respect the reflectional
symmetry, and are strictly parallel or perpendicular to the rotation axis (z). Reflection
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at these surfaces now leaves the vertical distance between rays unaffected, allowing for
vertically standing waves, p = P (x, y) cosmz, obeying impermeability of the horizontal
(rigid lid) surface and bottom for appropriately chosen m. The horizontal structure
of the wave field, P (x, y), is then described by an elliptic (Helmholtz) equation

Pxx + Pyy + m2(4Ω2/σ2 − 1)P = 0. (3.1)

In quantum mechanics, this is studied as a special case of Schrödinger’s equation,
where P represents the wave function of an electron in an infinitely deep well (at
zero potential). Depending on the shape of the basin (well) in the horizontal plane,
this equation supports either chaotic wave functions, or regular eigenmodes (Berry
1987). The Helmholtz equation reduces to a tractable dynamical system (a two-
dimensional map), when one considers high-energy, short waves (large m). These
waves again propagate along straight lines–ray paths, but now reflect from sidewalls
specularly (Heller 1996). In this limit, the dynamics is described by the fate of
the rays, and one aims at identifying the density of ray paths with the probability
density of the wave function, |P |2. For a number of well shapes, the ray paths are
chaotic, hence this field is referred to as quantumchaos (Gutzwiller 1990). Chaotic
wave functions correspond to ergodic orbits (on which only energy is conserved),
while regular eigenmodes correspond to closed orbits, which are rendered integrable
by the presence of a second conserved quantity (angular momentum) due to some
symmetry of the bounding shape (as for a circle), see examples in Berry (1981).
Ergodic orbits, associated with the chaotic spread of short waves, may perhaps also
offer an explanation for the observed universality in gravito-inertial wave spectra in
the ocean (Garrett & Munk 1975; Munk 1980). In this case, one has to regard the
filling of the ocean’s spectrum to be due to rapid, nonlinear processes, close to the
source (surface, bottom, or shelf edge) (Wunsch 1976), while the subsequent spreading
of the resulting small-amplitude linear waves might be along chaotic orbits, leaving,
by scattering from the (irregular) ocean boundary, an overall universal impression.

It is interesting to note that, even in this chaotic regime, periodic orbits, despite
being repelling, again seem to dominate the distribution of ray paths. This is because
waves tend to linger in their neighbourhood, and thus build up a significant amount
of energy there, producing ‘scars’ (Gutzwiller 1990; Heller 1996), that are surprisingly
reminiscent of their attracting counterparts in the hyperbolic wave regime.

4. Summary
In this paper we have looked at inertial waves in a homogeneous, rotating, fully

contained fluid. Previous laboratory experiments, (two-dimensional) theory, and nu-
merical work suggest that perturbations of the uniformly rotating state will give rise
to inertial wave focusing when some of the walls are not entirely parallel or perpen-
dicular to the rotation axis, so that the local reflectional symmetry of the container
is broken. The occurrence of an inertial wave attractor, as the result of repeated
focusing, has here been verified experimentally, by using a container with one sloping
sidewall. Though this may at first sight seem a peculiarity of this particular choice of
geometry, it should be realized that almost all natural containers will break the local
reflectional symmetry, and the occurrence of wave attractors should thus be regarded
as a generic phenomenon. Only by a very careful choice of geometry can focusing be
avoided. Ironically, this is quite often the case in the laboratory, where upright cylin-
drical or rectangular domains are generally favoured. Indeed, in Faller’s terminology
(Faller 1981), the present experiment is classified as an ‘abstract experiment’, intended
to isolate a particular conceptual process believed to be significant in nature.



Symmetry breaking in rotating fluids 25

Not only is the focusing phenomenon often eliminated in the lab (by an unfortunate
choice of geometry), but, more seriously, also in most commonly used theoretical
descriptions of wave motion in geophysics (due to a combination of the ‘traditional’
and hydrostatic approximation). These ‘symmetrizing’ approximations are, however,
avoided in Poincaré’s equation (1.1), which is the central (linear) model used here.

The present laboratory experiment shows that focusing is accompanied by the
generation of a cyclonic mean flow, along the axial cylinder that intersects the sloping
bottom at the position where the focusing takes place. This is argued to be the result
of centrifugal instabilities, due to the mixing of angular momentum, occurring upon
intensification of the current shear. In the geophysical context, the spherical shape
of the boundaries gives rise to inertial wave attractors, which may have relevance
to the driving of mean currents along the axial cylinder that intersects the surface
focusing locations (labelled F , in figure 5a). At these surface locations, and at the
sub-surface equator, this will be perceived as eastward countercurrents. The presence
of stratification will modify the spreading of the mixture (deforming the axial cylinder
into a prolate ellipsoid), but not the topology of the mean currents.

When (strong) stratification is added, the physically penetrable wave domain is
spatially restricted (by the occurrence of a turning surface). But numerical work
(Dintrans et al. 1999) suggests that wave attractors continue to exist. The ubiquitous
inertial peak in ocean spectra may in fact reflect the presence of a particular,
degenerate type of attractor, namely a point attractor (at the intersection of the
bottom and turning surface), which acts as a trap for gravito-inertial waves from the
equatorial belt that are steered polewards by reflections from the surface, bottom and
turning surface.

Even when a container does respect the local reflectional symmetry, yet another
type of symmetry breaking may occur, namely one which destroys the periodicity of
rays in the horizontal plane. This may lead to the complementary situation of wave
chaos, which may be relevant to the apparent universality of oceanic gravito-inertial
wave spectra. In real geophysical containers both symmetries will often be broken,
so that one may anticipate observations of both focusing and wave chaos. As these
two phenomena arise in approximations of the Poincaré equation (1.1), further study
of the full three-dimensional Poincaré problem seems warranted.
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